Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM- based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.
翻译:支持病媒机(SVM)是用于高效分类的通用分类器,其精度很高。SVM显示,在皮肤癌专家为早期检测和拯救生命而使用的计算机辅助诊断系统中,对黑瘤(皮肤癌)临床图像进行分类的精度很高。我们的目标是开发一个医疗低成本手持设备,该设备运行实时嵌入的SVM型诊断系统,用于初级护理,以早期检测黑瘤。在本文中,一个优化的SVM分类器被安装在近期的FPGA平台上,使用最新设计方法,嵌入拟议的芯片/构件系统实现在线高效黑瘤检测设备。硬件实施结果显示,在嵌入处理器上实施等效软件的精度高达97.9%和显著加速因数26,其中34%的资源利用率和2瓦特用于电耗。因此,已安装的系统在高性能和低成本、资源利用和电耗能方面满足关键嵌入系统限制,同时实现了高分类精确度。