Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More concretely, we explore a parallelization strategy that leverages the power of multicore CPUs and GPUs (graphics cards). We study this parallel method for first-order and second-order Lagrangians and we illustrate its excellent behavior in some interesting applications, namely Zermelo's navigation problem, a fuel-optimal navigation problem, and an interpolation problem.
翻译:分辨的变异方法在对不同机械系统进行数字模拟方面表现极佳。 在本文中, 我们引入了适合边界值问题的离散变异方法的迭接方法。 更具体地说, 我们探索了一种平行战略, 利用多极CPU和GPU( 绘图卡) 的力量。 我们为一等和二等Lagrangians 研究了这种平行方法, 我们展示了它在一些有趣的应用中的出色行为, 即 Zermelo 的导航问题、 燃料最佳导航问题和内插问题。