In this paper, we consider recovering $n$ dimensional signals from $m$ binary measurements corrupted by noises and sign flips under the assumption that the target signals have low generative intrinsic dimension, i.e., the target signals can be approximately generated via an $L$-Lipschitz generator $G: \mathbb{R}^k\rightarrow\mathbb{R}^{n}, k\ll n$. Although the binary measurements model is highly nonlinear, we propose a least square decoder and prove that, up to a constant $c$, with high probability, the least square decoder achieves a sharp estimation error $\mathcal{O} (\sqrt{\frac{k\log (Ln)}{m}})$ as long as $m\geq \mathcal{O}( k\log (Ln))$. Extensive numerical simulations and comparisons with state-of-the-art methods demonstrated the least square decoder is robust to noise and sign flips, as indicated by our theory. By constructing a ReLU network with properly chosen depth and width, we verify the (approximately) deep generative prior, which is of independent interest.
翻译:在本文中,我们考虑从被噪音和信号翻转所腐蚀的以美元为单位的二进制测量中收回美元元元元的元值信号,前提是目标信号具有低基因内涵,即目标信号可以通过美元-Lipschitz发电机产生,G:\mathbb{Räk\rightar\mathbb{R ⁇ n},k\ll n$。虽然二进制测量模型高度非线性,但我们提议了一个最小平方解码器,并证明,直到恒定美元,概率很高,最差的解码器达到一个精确的估计错误$\mathcal{O}(\sqrt\frac{k\log\log (Ln)\%}),只要$m\\\geqq\mathcal{O}(k\log)$,k\log (Ln) 。尽管二进化的模拟和比较表明,最平方解码对于噪音和反转,正如我们的理论所显示的那样,最接近于噪音和标志。通过建立一个独立深深层的REL网络来核查。