While the task of automatically detecting eating events has been examined in prior work using various wearable devices, the use of smartphones as standalone devices to infer eating events remains an open issue. This paper proposes a framework that infers eating vs. non-eating events from passive smartphone sensing and evaluates it on a dataset of 58 college students. First, we show that time of the day and features from modalities such as screen usage, accelerometer, app usage, and location are indicative of eating and non-eating events. Then, we show that eating events can be inferred with an AUROC (area under the receiver operating characteristics curve) of 0.65 using subject-independent machine learning models, which can be further improved up to 0.81 for subject-dependent and 0.81 for hybrid models using personalization techniques. Moreover, we show that users have different behavioral and contextual routines around eating episodes requiring specific feature groups to train fully personalized models. These findings are of potential value for future mobile food diary apps that are context-aware by enabling scalable sensing-based eating studies using only smartphones; detecting under-reported eating events, thus increasing data quality in self report-based studies; providing functionality to track food consumption and generate reminders for on-time collection of food diaries; and supporting mobile interventions towards healthy eating practices.
翻译:在以往的工作中,使用各种穿戴装置对自动检测饮食事件的任务进行了检查,而使用智能手机作为独立装置来推断饮食事件仍然是一个未决问题。本文件提出一个框架,从被动智能智能感测中推断饮食事件与不饮食事件,并在58名大学生的数据集中对其进行评估。首先,我们显示,当日的时间和特点来自屏幕使用、加速计、应用程序使用和地点等模式,表明饮食和不饮食事件。然后,我们表明,饮食事件可以用AUROC(接收器操作特征曲线下的区域)来推断,即0.65(使用依赖主题的机器学习模型),可以进一步改进到0.81(依赖主题的)和0.81(使用个人化技术的混合模型)。此外,我们显示,用户在饮食时有不同的行为和背景习惯,例如屏幕使用、加速计、应用程序使用和地点等模式需要充分培养个性化模型。这些发现对于未来的移动食品日记应用具有潜在价值,因为只有智能手机才能进行可缩放的基于饮食特征的研究;检测到用于支持健康食品消费的快速统计,因此,在收集数据方面增加了数据质量报告。