Over the past decade, tremendous progress has been made in inventing new RecSys methods. However, one of the fundamental problems of the RecSys research community remains the lack of applied datasets and benchmarks with well-defined evaluation rules and metrics to test these novel approaches. In this article, we present the TTRS - Tinkoff Transactions Recommender System benchmark. This financial transaction benchmark contains over 2 million interactions between almost 10,000 users and more than 1,000 merchant brands over 14 months. To the best of our knowledge, this is the first publicly available financial transactions dataset. To make it more suitable for possible applications, we provide a complete description of the data collection pipeline, its preprocessing, and the resulting dataset statistics. We also present a comprehensive comparison of the current popular RecSys methods on the next-period recommendation task and conduct a detailed analysis of their performance against various metrics and recommendation goals. Last but not least, we also introduce Personalized Item-Frequencies-based Model (Re)Ranker - PIFMR, a simple yet powerful approach that has proven to be the most effective for the benchmarked tasks.


翻译:过去十年来,在发明新的RecSys方法方面取得了巨大进展,然而,RecSys研究界的根本问题之一仍然是缺乏应用的数据集和基准,缺乏定义明确的评价规则和衡量标准,以测试这些新办法。在本条中,我们介绍了TTRS-Tinkoff交易建议系统基准。这一金融交易基准包含14个月中近10 000个用户和1 000多个商业品牌之间的200多万个互动。据我们所知,这是第一个公开的金融交易数据集。为了使之更适合可能的应用,我们提供了数据收集管道、其预处理和由此产生的数据集统计数据的完整描述。我们还全面比较了当前流行的Recys方法关于下期建议任务的情况,并对照各种指标和建议目标详细分析了它们的业绩。最后但并非最不重要的一点是,我们还采用了个人化的基于项目(Re)Ranker-PIFMR,这是证明对基准任务最为有效的简单但有力的方法。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
52+阅读 · 2020年8月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
6+阅读 · 2018年5月18日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员