We study the problem of performing automated experiment design for drug screening through Bayesian inference and optimisation. In particular, we compare and contrast the behaviour of linear-Gaussian models and Gaussian processes, when used in conjunction with upper confidence bound algorithms, Thompson sampling, or bounded horizon tree search. We show that non-myopic sophisticated exploration techniques using sparse tree search have a distinct advantage over methods such as Thompson sampling or upper confidence bounds in this setting. We demonstrate the significant superiority of the approach over existing and synthetic datasets of drug toxicity.
翻译:我们研究通过贝叶斯人的推断和优化进行药物筛查自动实验设计的问题,特别是比较和比较线性-Gaussian模型和Gaussian过程的行为,这些模型和过程与最高信任约束算法、Thompson取样或边缘地平线树搜索一起使用,我们发现,利用稀疏树木搜索的非现代尖端勘探技术比Thompson取样或这一环境的上信任界限等方法具有明显的优势,我们证明这种方法比现有和合成的药物毒性数据集具有显著优势。