Recommender systems -- and especially matrix factorization-based collaborative filtering algorithms -- play a crucial role in mediating our access to online information. We show that such algorithms induce a particular kind of stereotyping: if preferences for a \textit{set} of items are anti-correlated in the general user population, then those items may not be recommended together to a user, regardless of that user's preferences and ratings history. First, we introduce a notion of \textit{joint accessibility}, which measures the extent to which a set of items can jointly be accessed by users. We then study joint accessibility under the standard factorization-based collaborative filtering framework, and provide theoretical necessary and sufficient conditions when joint accessibility is violated. Moreover, we show that these conditions can easily be violated when the users are represented by a single feature vector. To improve joint accessibility, we further propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user using a multi-vector representation. We conduct extensive experiments on real and simulated datasets, demonstrating the stereotyping problem with standard single-vector matrix factorization models.
翻译:推荐人系统 -- -- 特别是基于矩阵要素的协作过滤算法 -- -- 在调解我们获取在线信息方面发挥着关键作用。我们显示,这种算法引发了一种特定的陈规定型观念:如果一般用户群体偏爱项目\ textit{setset],那么这些物项可能不会被推荐给一个用户,而不管该用户的偏好和评级历史如何。首先,我们引入了一种概念\ textit{联合可访问性,以衡量用户能够联合访问一组项目的程度。我们随后在基于标准系数的协作过滤框架下研究共同可访问性,并在联合可访问性被违反时提供理论上必要和充分的条件。此外,我们表明,当用户使用单一特性矢量矢量表示时,这些条件很容易被违反。为了改善共同的可访问性,我们进一步提出替代建模办法,目的是用多控量表示方式捕捉每个用户的多种利益。我们在真实和模拟数据集上进行广泛的实验,用标准的单位矩阵要素模型展示了陈规定型观念问题。