Assigning a label to each pixel in an image, namely semantic segmentation, has been an important task in computer vision, and has applications in autonomous driving, robotic navigation, localization, and scene understanding. Fully convolutional neural networks have proved to be a successful solution for the task over the years but most of the work being done focuses primarily on accuracy. In this paper, we present a computationally efficient approach to semantic segmentation, while achieving a high mean intersection over union (mIOU), 70.33% on Cityscapes challenge. The network proposed is capable of running real-time on mobile devices. In addition, we make our code and model weights publicly available.
翻译:给图像中的每个像素指定一个标签,即语义分割,是计算机视觉中的一项重要任务,具有在自主驾驶、机器人导航、本地化和场景理解方面的应用。 完全进化的神经网络多年来已证明是这项任务的成功解决方案,但大部分工作主要侧重于准确性。 在本文中,我们提出了一个计算高效的语义分割方法,同时在城市环境挑战方面实现一个高平均值的交叉,即70.33%。提议的网络能够实时运行移动设备。此外,我们还公布了我们的代码和模型重量。