Deep learning is a rapidly developing approach in the field of infrared and visible image fusion. In this context, the use of dense blocks in deep networks significantly improves the utilization of shallow information, and the combination of the Generative Adversarial Network (GAN) also improves the fusion performance of two source images. We propose a new method based on dense blocks and GANs , and we directly insert the input image-visible light image in each layer of the entire network. We use SSIM and gradient loss functions that are more consistent with perception instead of mean square error loss. After the adversarial training between the generator and the discriminator, we show that a trained end-to-end fusion network -- the generator network -- is finally obtained. Our experiments show that the fused images obtained by our approach achieve good score based on multiple evaluation indicators. Further, our fused images have better visual effects in multiple sets of contrasts, which are more satisfying to human visual perception.
翻译:深层学习是红外和可见图像融合领域的一个快速发展的方法。 在这方面,深海网络中密度块的使用大大改善了浅信息的利用,而基因反转网络(GAN)的结合也改善了两种源图像的聚合性能。我们提出了一个基于稠密区块和GAN的新方法,我们直接将输入图像可见光图像的图象插入整个网络的每个层。我们使用了更符合感知而非中度平方误差损失的SSIM和梯度丢失功能。在发电机和导体之间的对抗性训练之后,我们展示了经过训练的端到端融合网络 -- -- 发电机网络 -- -- 终于获得了成功。我们的实验表明,通过我们的方法获得的集成图像在多个评价指标的基础上取得了良好的评分。此外,我们的导成图像在多组对比中具有更好的视觉效果,这些对比对人的视觉感知更为满意。