Complex-valued neural networks have attracted increasing attention in recent years, while it remains open on the advantages of complex-valued neural networks in comparison with real-valued networks. This work takes one step on this direction by introducing the \emph{complex-reaction network} with fully-connected feed-forward architecture. We prove the universal approximation property for complex-reaction networks, and show that a class of radial functions can be approximated by a complex-reaction network using the polynomial number of parameters, whereas real-valued networks need at least exponential parameters to reach the same approximation level. For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks, which may show some insights on finding the optimal solutions more easily for complex-reaction networks.
翻译:近几年来,复杂价值神经网络吸引了越来越多的关注,而与实际价值网络相比,复杂价值神经网络的优势依然开放。 这项工作在这方面迈出了一步,引入了具有完全连接的进化前向结构的\emph{complex- reaction 网络。 我们证明了复杂价值神经网络的普遍近似属性,并表明使用多数值参数的复杂反应网络可以近似于一类辐射功能,而实际价值网络至少需要指数参数才能达到相同的近似水平。 关于尽量减少实证风险,我们的理论结果表明,一组复杂反应网络的关键点是实际价值网络的恰当分支,这可能显示一些关于找到复杂反应网络的最佳解决方案的见解。