The availability of high-resolution weather radar images underpins effective forecasting and decision-making. In regions beyond traditional radar coverage, generative models have emerged as an important synthetic capability, fusing more ubiquitous data sources, such as satellite imagery and numerical weather models, into accurate radar-like products. Here, we demonstrate methods to augment conventional convolutional neural networks with quantum-assisted models for generative tasks in global synthetic weather radar. We show that quantum kernels can, in principle, perform fundamentally more complex tasks than classical learning machines on the relevant underlying data. Our results establish synthetic weather radar as an effective heuristic benchmark for quantum computing capabilities and set the stage for detailed quantum advantage benchmarking on a high-impact operationally relevant problem.
翻译:高分辨率气象雷达图像的可用性是有效预报和决策的基础。在传统雷达覆盖范围以外的区域,基因模型已成为一个重要的合成能力,将卫星图象和数字气象模型等更加普遍的数据源转化为精确的雷达类产品。在这里,我们展示了如何扩大传统的革命性神经网络,利用量子辅助模型在全球合成天气雷达中执行基因化任务。我们表明,量子内核原则上可以比传统学习机器在相关基本数据上执行更复杂得多的任务。我们的结果将合成天气雷达确立为量子计算能力的有效超值基准,并为对高影响的实际操作相关问题进行详细的量子优势基准设定舞台。