The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models, considering that manual annotation is extremely expensive and time-consuming. To address this problem, we present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models that aim at reducing the time required to annotate radiology datasets. Through MONAI Label, researchers can develop AI annotation applications focusing on their domain of expertise. It allows researchers to readily deploy their apps as services, which can be made available to clinicians via their preferred user interface. Currently, MONAI Label readily supports locally installed (3D Slicer) and web-based (OHIF) frontends and offers two active learning strategies to facilitate and speed up the training of segmentation algorithms. MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike. Additionally, MONAI Label provides sample AI-based interactive and non-interactive labeling applications, that can be used directly off the shelf, as plug-and-play to any given dataset. Significant reduced annotation times using the interactive model can be observed on two public datasets.


翻译:缺乏注释数据集是训练新的特定任务监督机器学习模型的一个主要瓶颈,因为手动注释需要极大的成本和时间。为了解决这个问题,我们提出了 MONAI Label,一种免费的、开源的框架,旨在简化基于人工智能(AI)模型开发应用程序的过程,以减少放射学数据集注释所需的时间。通过 MONAI Label,研究人员可以开发以他们的专业领域为重点的 AI 注释应用程序。它允许研究人员将其应用程序作为服务准备部署,这些服务可以通过他们喜欢的用户界面提供给临床医生使用。目前,MONAI Label 支持本地安装的 (3D Slicer) 和基于 Web 的 (OHIF) 前端,并提供两种主动学习策略,以促进和加速分割算法的训练。MONAI Label 允许研究人员通过共享向其他研究人员和临床医生提供他们基于 AI 的注释应用程序的改进。此外,MONAI Label 提供了样本 AI 基于交互和非交互式标注应用程序,可以现成地作为即插即用工具用于任何给定的数据集。在两个公共数据集中,可以观察到使用交互模型显著减少了注释时间。

1
下载
关闭预览

相关内容

LLM in Medical Domain: 大语言模型在医学领域的应用
专知会员服务
100+阅读 · 2023年6月17日
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
LLM in Medical Domain: 大语言模型在医学领域的应用
专知会员服务
100+阅读 · 2023年6月17日
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员