Embedded devices are becoming popular. Meanwhile, researchers are actively working on improving the security of embedded devices. However, previous work ignores the insecurity caused by a special category of devices, i.e., the End-of-Life (EoL in short) devices. Once a product becomes End-of-Life, vendors tend to no longer maintain its firmware or software, including providing bug fixes and security patches. This makes EoL devices susceptible to attacks. For instance, a report showed that an EoL model with thousands of active devices was exploited to redirect web traffic for malicious purposes. In this paper, we conduct the first measurement study to shed light on the (in)security of EoL devices. To this end, our study performs two types of analysis, including the aliveness analysis and the vulnerability analysis. The first one aims to detect the scale of EoL devices that are still alive. The second one is to evaluate the vulnerabilities existing in (active) EoL devices. We have applied our approach to a large number of EoL models from three vendors (i.e., D-Link, Tp-Link, and Netgear) and detect the alive devices in a time period of ten months. Our study reveals some worrisome facts that were unknown by the community. For instance, there exist more than 2 million active EoL devices. Nearly 300,000 of them are still alive even after five years since they became EoL. Although vendors may release security patches after the EoL date, however, the process is ad hoc and incomplete. As a result, more than 1 million active EoL devices are vulnerable, and nearly half of them are threatened by high-risk vulnerabilities. Attackers can achieve a minimum of 2.79 Tbps DDoS attack by compromising a large number of active EoL devices. We believe these facts pose a clear call for more attention to deal with the security issues of EoL devices.


翻译:嵌入装置正在变得受欢迎。 同时,研究人员正在积极致力于改善嵌入装置的安全性。 但是, 先前的工作忽略了特殊类别的装置, 即“ 生命结束” 装置造成的不安全性。 一旦产品成为“ 生命结束”, 供应商往往不再保持其固定的软件或软件, 包括提供错误修正和安全补丁。 这使得“ EL” 装置容易受到攻击。 例如, 一份报告显示, 一个带有数千个运行中的装置的“ EoL” 模型被利用, 将网络流量转向恶意目的。 在本文中, 我们进行了第一次测量研究, 以揭示( ) EoL 装置的安全性安全性( 即 D- Link 、 Tp- L ) 设备的安全性( ) 安全性( ) 。 自“ 生命结束 " 生命结束 " 后, 我们的“ Eo " 系统安全性变弱 " 系统( ) 系统( ) 系统安全性能评估现有弱点。 我们用我们的方法对3个供应商( ) 的很多的“ Eo " 网络释放 " 模型 " ) 工具( ) ( ) ) (即 D- Link, ) ) 和 " 生命释放 " 几乎 " EL " 系统( 生命结束 " ) 系统 " 运行 " 系统 " 运行 " 系统( ) ) ) 运行 " 系统( ) 的 " ) 的 " 系统( 系统( ) 后, 生命危险 " ) ) 进行着 " 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员