This paper presents Okapi, a new dataset for Natural Language to executable web Application Programming Interfaces (NL2API). This dataset is in English and contains 22,508 questions and 9,019 unique API calls, covering three domains. We define new compositional generalization tasks for NL2API which explore the models' ability to extrapolate from simple API calls in the training set to new and more complex API calls in the inference phase. Also, the models are required to generate API calls that execute correctly as opposed to the existing approaches which evaluate queries with placeholder values. Our dataset is different than most of the existing compositional semantic parsing datasets because it is a non-synthetic dataset studying the compositional generalization in a low-resource setting. Okapi is a step towards creating realistic datasets and benchmarks for studying compositional generalization alongside the existing datasets and tasks. We report the generalization capabilities of sequence-to-sequence baseline models trained on a variety of the SCAN and Okapi datasets tasks. The best model achieves 15\% exact match accuracy when generalizing from simple API calls to more complex API calls. This highlights some challenges for future research. Okapi dataset and tasks are publicly available at https://aka.ms/nl2api/data.
翻译:本文展示了 Okapi 的自然语言用于可执行的网络应用程序编程界面( NL2API) 的新数据集 Okapi 。 此数据集用英语, 包含22, 508 个问题和9, 019个独特的 API 调用, 涵盖三个领域 。 我们定义了 NL2API 的新的拼写概括性任务, 用于探索模型从简单的 API 调用到 引用阶段中更复杂的 API 调用 新的 和 更复杂的 API 调用 。 另外, 模型需要生成 API 调用正确执行的 API 调用, 而不是用占位符值评估查询的现有方法 。 我们的数据集与大多数现有的组成语义语义解析解析数据集不同, 因为它是一个非合成性的数据集, 是在低资源环境下研究 的拼写性概括性 。 Okapi 将一些最真实的模型匹配到 SAPI 的 15 。 当常规的 ACPI 访问中, 将一些最简单的 AQLA\ a complical complain 匹配 。