We revisit the problem of general identifiability originally introduced in [Lee et al., 2019] for causal inference and note that it is necessary to add positivity assumption of observational distribution to the original definition of the problem. We show that without such an assumption the rules of do-calculus and consequently the proposed algorithm in [Lee et al., 2019] are not sound. Moreover, adding the assumption will cause the completeness proof in [Lee et al., 2019] to fail. Under positivity assumption, we present a new algorithm that is provably both sound and complete. A nice property of this new algorithm is that it establishes a connection between general identifiability and classical identifiability by Pearl [1995] through decomposing the general identifiability problem into a series of classical identifiability sub-problems.
翻译:我们回顾[Lee et al., 2019] 中最初提出的因果推断的一般可识别性问题,指出有必要将观察分布的推定假设与问题的最初定义相加,我们表明,如果没有这样的假设, do-culus 的规则以及[Lee et al., 2019] 中的拟议算法并不健全。此外,加上这一假设,将使[Lee et al., 2019] 中的完整证明失败。根据正则假设,我们提出了一种既合理又完整的新算法。这一新算法的一个优点是,它通过将一般可识别性问题分解为一系列传统的可识别性子问题,在Pearl (1995年) 的一般可识别性和典型可识别性之间建立了联系。