Between $15\,\%$ and $45\,\%$ of children experience a fracture during their growth years, making accurate diagnosis essential. Fracture morphology, alongside location and fragment angle, is a key diagnostic feature. In this work, we propose a method to extract fracture morphology by assigning automatically global AO codes to corresponding fracture bounding boxes. This approach enables the use of public datasets and reformulates the global multilabel task into a local multiclass one, improving the average F1 score by $7.89\,\%$. However, performance declines when using imperfect fracture detectors, highlighting challenges for real-world deployment. Our code is available on GitHub.


翻译:在儿童成长阶段,约15%至45%的个体会经历骨折,因此精确诊断至关重要。骨折形态与骨折位置及碎片角度共同构成关键诊断特征。本研究提出一种方法,通过为对应的骨折边界框自动分配全局AO编码来提取骨折形态。该方法支持利用公开数据集,并将全局多标签任务重构为局部多类别任务,使平均F1分数提升7.89%。然而,当使用不完善的骨折检测器时,性能会出现下降,这凸显了实际部署中的挑战。相关代码已在GitHub上开源。

0
下载
关闭预览

相关内容

【NeurIPS2023】半监督端到端对比学习用于时间序列分类
专知会员服务
36+阅读 · 2023年10月17日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员