Between $15\,\%$ and $45\,\%$ of children experience a fracture during their growth years, making accurate diagnosis essential. Fracture morphology, alongside location and fragment angle, is a key diagnostic feature. In this work, we propose a method to extract fracture morphology by assigning automatically global AO codes to corresponding fracture bounding boxes. This approach enables the use of public datasets and reformulates the global multilabel task into a local multiclass one, improving the average F1 score by $7.89\,\%$. However, performance declines when using imperfect fracture detectors, highlighting challenges for real-world deployment. Our code is available on GitHub.
翻译:在儿童成长阶段,约15%至45%的个体会经历骨折,因此精确诊断至关重要。骨折形态与骨折位置及碎片角度共同构成关键诊断特征。本研究提出一种方法,通过为对应的骨折边界框自动分配全局AO编码来提取骨折形态。该方法支持利用公开数据集,并将全局多标签任务重构为局部多类别任务,使平均F1分数提升7.89%。然而,当使用不完善的骨折检测器时,性能会出现下降,这凸显了实际部署中的挑战。相关代码已在GitHub上开源。