Expected-time mobile search (ETS) is a fundamental robotics task where a mobile sensor navigates an environment to minimize the expected time required to locate a hidden object. Global route optimization for ETS in static 2D continuous environments remains largely underexplored due to the intractability of objective evaluation, stemming from the continuous nature of the environment and the interplay of motion and visibility constraints. Prior work has addressed this through partial discretization, leading to discrete-sensing formulations tackled via utility-greedy heuristics. Others have taken an indirect approach by heuristically approximating the objective using minimum latency problems on fixed graphs, enabling global route optimization via efficient metaheuristics. This paper builds on and significantly extends the latter by introducing Milaps (Minimum latency problems), a model-based solution framework for ETS. Milaps integrates novel auxiliary objectives and adapts a recent anytime metaheuristic for the traveling deliveryman problem, chosen for its strong performance under tight runtime constraints. Evaluations on a novel large-scale dataset demonstrate superior trade-offs between solution quality and runtime compared to state-of-the-art baselines. The best-performing strategy rapidly generates a preliminary solution, assigns static weights to sensing configurations, and optimizes global costs metaheuristically. Additionally, a qualitative study highlights the framework's flexibility across diverse scenarios.
翻译:期望时间移动搜索(ETS)是一项基础机器人任务,其目标是通过移动传感器在环境中的导航,最小化定位隐藏物体的期望时间。在静态二维连续环境中,由于目标函数评估的难处理性——源于环境的连续特性以及运动与可见性约束的相互耦合——ETS的全局路径优化问题仍未得到充分探索。先前研究通过部分离散化方法,形成了可通过效用贪婪启发式算法求解的离散感知问题表述。另一些研究则采用间接途径,通过基于固定图的最小延迟问题启发式近似目标函数,从而利用高效元启发式算法实现全局路径优化。本文在后者基础上进行了重要扩展,提出了Milaps(最小延迟问题),一种基于模型的ETS求解框架。Milaps整合了新颖的辅助目标函数,并适配了近期针对旅行配送员问题提出的随时元启发式算法——该算法因其在严格运行时约束下的优异性能而被选用。在新构建的大规模数据集上的评估表明,相较于最先进的基线方法,本框架在求解质量与运行时间之间取得了更优的权衡。性能最佳的策略能快速生成初始解,为感知配置分配静态权重,并通过元启发式方法优化全局成本。此外,定性研究凸显了该框架在不同场景下的强适应性。