Secret key agreement (SKA) is an essential primitive in cryptography and information security. In a multiterminal key agreement problem, there are a set of terminals each having access to a component of a vector random variable, and the goal of the terminals is to establish a shared key among a designated subset of terminals. This problem has been studied under different assumptions about the adversary. In the most general model, the adversary has access to a random variable $Z$, that is correlated with all terminals' variables. The single-letter characterization of the secret key capacity of this model, known as the wiretap secret key capacity, is not known for an arbitrary $Z$. In this paper, we calculate the wiretap secret key capacity of a Tree-PIN, when $Z$ consists of noisy version of terminals' variables. We also derive an upper bound and a lower bound for the wiretap secret key capacity of a PIN, and prove their tightness for some special cases.
翻译:密钥协议( SKA) 是加密和信息安全的基本原始协议 。 在多端关键协议问题中, 每个终端都有一组可以访问矢量随机变量组成部分的终端, 终端的目标是在指定的终端子集中建立共享密钥 。 这个问题已经在对对手的不同假设下研究过 。 在最普通的模型中, 对手可以访问随机变量$Z美元, 这与所有终端变量相关联 。 这个模型的秘密密钥能力的单字母描述, 被称为窃听秘密密钥能力, 并不为任意的 $Z 。 在本文中, 我们计算了树- PIN 的窃听密密密密密密密密功能, 当$Z 是由超吵的终端变量组成时 。 我们还为 PIN 的窃听秘密密密键能力获取了上方和下方框, 并证明了某些特殊案例的严格性 。