We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in Rényi divergence (which implies TV, $\mathcal{W}_2$, KL, $χ^2$). The proof departs from known approaches for polytime algorithms for the problem -- we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the target distribution.
翻译:本文提出了一种用于均匀采样高维凸体的新型随机游走算法。该算法在达到最先进运行时间复杂度的同时,对输出结果提供了比以往已知方法更强的理论保证,具体表现为在Rényi散度上的收敛性(这隐含了在总变差距离、$\mathcal{W}_2$距离、KL散度及$χ^2$散度上的收敛性)。证明过程突破了该问题多项式时间算法的已知分析框架——我们采用随机扩散的视角,通过目标分布的函数等周常数确定收敛速率,证明了算法向目标分布的收缩性。