Bayesian hierarchical models are proposed for modeling tropical cyclone characteristics and their damage potential in the Atlantic basin. We model the joint probability distribution of tropical cyclone characteristics and their damage potential at two different temporal scales, while taking several climate indices into account. First, a predictive model for an entire season is developed that forecasts the number of cyclone events that will take place, the probability of each cyclone causing some amount of damage, and the monetized value of damages. Then, specific characteristics of individual cyclones are considered to predict the monetized value of the damage it will cause. Robustness studies are conducted and excellent prediction power is demonstrated across different data science models and evaluation techniques.


翻译:为了模拟热带气旋特性及其在大西洋盆地的损害潜力,提出了贝叶斯等级模型,我们用两个不同的时间尺度模拟热带气旋特性及其损害潜力的联合概率分布,同时考虑到若干气候指数,首先,为整个季节开发了一个预测模型,预测将要发生的气旋事件的数量、每起气旋造成一定损害的概率以及损害的货币价值,然后,考虑个别气旋的具体特点,预测其造成的损害的货币化价值。 进行了强力研究,在不同的数据科学模型和评价技术中展示了极好的预测力。

0
下载
关闭预览

相关内容

MONET:Mobile Networks & Applications。 Explanation:移动网络与应用。 Publisher:Springer。 SIT:Mobile Networks & Applications
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员