Flow Matching (FM) has emerged as a powerful paradigm for continuous normalizing flows, yet standard FM implicitly performs an unweighted $L^2$ regression over the entire ambient space. In high dimensions, this leads to a fundamental inefficiency: the vast majority of the integration domain consists of low-density ``void'' regions where the target velocity fields are often chaotic or ill-defined. In this paper, we propose {$γ$-Flow Matching ($γ$-FM)}, a density-weighted variant that aligns the regression geometry with the underlying probability flow. While density weighting is desirable, naive implementations would require evaluating the intractable target density. We circumvent this by introducing a Dynamic Density-Weighting strategy that estimates the \emph{target} density directly from training particles. This approach allows us to dynamically downweight the regression loss in void regions without compromising the simulation-free nature of FM. Theoretically, we establish that $γ$-FM minimizes the transport cost on a statistical manifold endowed with the $γ$-Stein metric. Spectral analysis further suggests that this geometry induces an implicit Sobolev regularization, effectively damping high-frequency oscillations in void regions. Empirically, $γ$-FM significantly improves vector field smoothness and sampling efficiency on high-dimensional latent datasets, while demonstrating intrinsic robustness to outliers.


翻译:流匹配(FM)已成为连续归一化流的一种强大范式,然而标准FM在整个环境空间上隐式执行了未加权的$L^2$回归。在高维空间中,这导致了一个根本性的低效问题:积分域的绝大部分由低密度“空洞”区域组成,这些区域中的目标速度场常常是混沌或未定义的。本文提出{$γ$-流匹配($γ$-FM)},这是一种密度加权的变体,它将回归几何结构与底层的概率流对齐。虽然密度加权是理想的,但朴素实现需要评估难以处理的目标密度。我们通过引入一种动态密度加权策略来规避此问题,该策略直接从训练粒子中估计\emph{目标}密度。这种方法使我们能够在保持FM免于模拟特性的同时,动态降低空洞区域中的回归损失权重。理论上,我们证明$γ$-FM在赋予$γ$-Stein度量的统计流形上最小化了传输代价。谱分析进一步表明,这种几何结构诱导了一种隐式的Sobolev正则化,有效抑制了空洞区域中的高频振荡。实证表明,$γ$-FM在高维隐变量数据集上显著改善了向量场的平滑性和采样效率,同时展现出对异常值的固有鲁棒性。

0
下载
关闭预览

相关内容

FM 2019是正式方法欧洲(FME)组织的系列国际研讨会中的第23次,该协会是一个独立的协会,旨在促进软件开发正式方法的使用和研究。官网链接:http://formalmethods2019.inesctec.pt/?page_id=565
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员