The framework of geometric extremes is based on the convergence of scaled sample clouds onto a limit set, characterized by a gauge function, with the shape of the limit set determining extremal dependence structures. While it is known that a blunt limit set implies asymptotic independence, the absence of bluntness can be linked to both asymptotic dependence and independence. Focusing on the bivariate case, under a truncated gamma modeling assumption with bounded angular density, we show that a ``pointy'' limit set implies asymptotic dependence, thus offering practical geometric criteria for identifying extremal dependence classes. Suitable models for the gauge function offer the ability to capture asymptotically independent or dependent data structures, without requiring prior knowledge of the true extremal dependence structure. The geometric approach thus offers a simple alternative to various parametric copula models that have been developed for this purpose in recent years. We consider two types of additively mixed gauge functions that provide a smooth interpolation between asymptotic dependence and asymptotic independence. We derive their explicit forms, explore their properties, and establish connections to the developed geometric criteria. Through a simulation study, we evaluate the effectiveness of the geometric approach with additively mixed gauge functions, comparing its performance to existing methodologies that account for both asymptotic dependence and asymptotic independence. The methodology is computationally efficient and yields reliable performance across various extremal dependence scenarios.


翻译:几何极值框架基于缩放样本云收敛于一个由规范函数刻画的极限集,极限集的形状决定了极值依赖结构。已知钝性极限集意味着渐近独立性,但非钝性极限集既可能与渐近依赖相关,也可能与渐近独立相关。聚焦于二元情形,在有界角密度的截断伽马模型假设下,我们证明“尖点”极限集意味着渐近依赖,从而为识别极值依赖类别提供了实用的几何准则。合适的规范函数模型能够捕捉渐近独立或依赖的数据结构,而无需事先了解真实的极值依赖结构。因此,几何方法为近年来为此目的开发的各种参数化copula模型提供了一种简单的替代方案。我们考虑两种可加混合的规范函数,它们在渐近依赖与渐近独立之间提供了平滑插值。我们推导了其显式形式,探索了其性质,并建立了与所发展几何准则的联系。通过模拟研究,我们评估了采用可加混合规范函数的几何方法的有效性,并将其性能与同时考虑渐近依赖和渐近独立性的现有方法进行比较。该方法计算高效,并在各种极值依赖场景下展现出可靠的性能。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员