We introduce an approach to counterfactual inference based on merging information from multiple datasets. We consider a causal reformulation of the statistical marginal problem: given a collection of marginal structural causal models (SCMs) over distinct but overlapping sets of variables, determine the set of joint SCMs that are counterfactually consistent with the marginal ones. We formalise this approach for categorical SCMs using the response function formulation and show that it reduces the space of allowed marginal and joint SCMs. Our work thus highlights a new mode of falsifiability through additional variables, in contrast to the statistical one via additional data.
翻译:我们采用了基于将多个数据集的信息合并起来的反事实推断方法,我们考虑了统计边际问题的因果重现:鉴于收集了不同但相互重叠的变量的边缘结构性因果模型,确定一套与边际变量相对应的共同 SCCM 方法,我们利用反应功能的配方将这一方法正式确定为绝对的SCM 方法,并表明它减少了允许的边际和联合的SCM 空间。因此,我们的工作突显了一种通过额外变量进行伪造的新模式,与通过额外数据进行统计的模型不同。