In this paper we propose an approximation method for high-dimensional $1$-periodic functions based on the multivariate ANOVA decomposition. We provide an analysis on the classical ANOVA decomposition on the torus and prove some important properties such as the inheritance of smoothness for Sobolev type spaces and the weighted Wiener algebra. We exploit special kinds of sparsity in the ANOVA decomposition with the aim to approximate a function in a scattered data or black-box approximation scenario. This method allows us to simultaneously achieve an importance ranking on dimensions and dimension interactions which is referred to as attribute ranking in some applications. In scattered data approximation we rely on a special algorithm based on the non-equispaced fast Fourier transform (or NFFT) for fast multiplication with arising Fourier matrices. For black-box approximation we choose the well-known rank-1 lattices as sampling schemes and show properties of the appearing special lattices.
翻译:在本文中,我们根据多变量 ANOVA 分解法提出高维度一美元周期函数的近似法。 我们分析了古典的 ANOVA 分解法, 并证明了一些重要的特性, 如 Sobolev 类型空间的光滑继承和加权 Wiener 代数。 我们在 ANOVA 分解法中利用特殊种类的宽度, 目的是在分散的数据或黑盒近似情景中估计一个函数。 这种方法让我们同时在尺寸和尺寸相互作用上取得重要排序, 在某些应用中被称为属性排序 。 在分散的数据近似法中, 我们依赖基于非等空快速Fourier 快速变换法( 或 NFFT) 的特殊算法, 与新出现的 Fourier 矩阵快速乘以快速乘法。 对于黑盒近似, 我们选择已知的级-1 级拉特为抽样方案, 并显示正在出现的特殊拉特的特性 。