In the online packet scheduling problem with deadlines (PacketScheduling, for short), the goal is to schedule transmissions of packets that arrive over time in a network switch and need to be sent across a link. Each packet has a deadline, representing its urgency, and a non-negative weight, that represents its priority. Only one packet can be transmitted in any time slot, so, if the system is overloaded, some packets will inevitably miss their deadlines and be dropped. In this scenario, the natural objective is to compute a transmission schedule that maximizes the total weight of packets which are successfully transmitted. The problem is inherently online, with the scheduling decisions made without the knowledge of future packet arrivals. The central problem concerning PacketScheduling, that has been a subject of intensive study since 2001, is to determine the optimal competitive ratio of online algorithms, namely the worst-case ratio between the optimum total weight of a schedule (computed by an offline algorithm) and the weight of a schedule computed by a (deterministic) online algorithm. We solve this open problem by presenting a $\phi$-competitive online algorithm for PacketScheduling (where $\phi\approx 1.618$ is the golden ratio), matching the previously established lower bound.
翻译:在有最后期限( PacketScheduliing, 短时间) 的在线数据包调度问题中, 目标是排期传送在网络开关中随时间而到的包裹, 并且需要通过链接发送。 每包都有代表其优先性的最后期限、 代表其紧迫性和非负性重量。 只有一包可以在任何时间档中传输, 因此, 如果系统超载, 有些包将不可避免地错过最后期限并被丢弃 。 在此情况下, 自然目标是计算一个传输时间表, 使成功传输的包的总重量最大化 。 问题在于内在的在线, 且在不知晓未来寄送包裹的情况下做出日程安排决定 。 有关 PacketSchedulining 的中心问题, 代表其紧迫性, 代表其优先性。 自2001年以来, 一直受到密集研究的关于 PacketScheduulting 的核心问题是确定在线算法的最佳竞争比率, 即时间表( 由离线运算算算算算算) 和由( 定性) 在线算算算算出的日程的重量之间的最差比。 我们通过提出 1.618\ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 等 的金 平 平 平调比 来解决这个问题。