Process discovery aims to learn a process model from observed process behavior. From a user's perspective, most discovery algorithms work like a black box. Besides parameter tuning, there is no interaction between the user and the algorithm. Interactive process discovery allows the user to exploit domain knowledge and to guide the discovery process. Previously, an incremental discovery approach has been introduced where a model, considered to be under construction, gets incrementally extended by user-selected process behavior. This paper introduces a novel approach that additionally allows the user to freeze model parts within the model under construction. Frozen sub-models are not altered by the incremental approach when new behavior is added to the model. The user can thus steer the discovery algorithm. Our experiments show that freezing sub-models can lead to higher quality models.
翻译:过程发现旨在从观察到的过程行为中学习一个过程模型。 从用户的角度来看, 大多数发现算法都像黑盒一样工作。 除了参数调整, 用户和算法之间没有互动关系。 互动过程发现使用户能够利用域知识并指导发现过程。 以前, 已经引入了递增发现方法, 当模型被认为正在构建中, 通过用户选择的过程行为逐步扩展。 本文引入了一种新的方法, 允许用户在正在构建的模型中冻结模型的部件。 当新行为添加到模型中时, 冷冻子模型不会因渐进方法而改变。 用户因此可以引导发现算法。 我们的实验显示, 冻结子模型可以导致质量更高的模型 。