Large-scale analysis of pedestrian infrastructures, particularly sidewalks, is critical to human-centric urban planning and design. Benefiting from the rich data set of planimetric features and high-resolution orthoimages provided through the New York City Open Data portal, we train a computer vision model to detect sidewalks, roads, and buildings from remote-sensing imagery and achieve 83% mIoU over held-out test set. We apply shape analysis techniques to study different attributes of the extracted sidewalks. More specifically, we do a tile-wise analysis of the width, angle, and curvature of sidewalks, which aside from their general impacts on walkability and accessibility of urban areas, are known to have significant roles in the mobility of wheelchair users. The preliminary results are promising, glimpsing the potential of the proposed approach to be adopted in different cities, enabling researchers and practitioners to have a more vivid picture of the pedestrian realm.
翻译:大规模分析行人基础设施,特别是人行道,对于以人为中心的城市规划和设计至关重要。从通过纽约市开放数据门户网站提供的精密的测图特征和高分辨率正方形数据集中受益,我们通过遥感图像培训计算机视觉模型,以探测人行道、道路和建筑物,并在悬置测试装置上达到83%的MIOU。我们运用形状分析技术研究提取的人行道的不同属性。更具体地说,我们对人行道的宽度、角度和曲度进行了瓷砖瓦分析,这些分析除了对城市地区可行走性和无障碍性的一般影响外,在轮椅使用者的移动中具有显著作用。初步结果很有希望,将拟议方法在不同的城市采用的可能性拉平,使研究人员和从业人员能够更生动地了解行人行域。