We introduce Neural Optimal Design of Experiments, a learning-based framework for optimal experimental design in inverse problems that avoids classical bilevel optimization and indirect sparsity regularization. NODE jointly trains a neural reconstruction model and a fixed-budget set of continuous design variables representing sensor locations, sampling times, or measurement angles, within a single optimization loop. By optimizing measurement locations directly rather than weighting a dense grid of candidates, the proposed approach enforces sparsity by design, eliminates the need for l1 tuning, and substantially reduces computational complexity. We validate NODE on an analytically tractable exponential growth benchmark, on MNIST image sampling, and illustrate its effectiveness on a real world sparse view X ray CT example. In all cases, NODE outperforms baseline approaches, demonstrating improved reconstruction accuracy and task-specific performance.
翻译:我们提出神经实验最优设计,这是一种基于学习的逆问题最优实验设计框架,避免了经典的双层优化和间接稀疏正则化。NODE 在单一优化循环中联合训练神经重建模型和一组固定预算的连续设计变量,这些变量代表传感器位置、采样时间或测量角度。通过直接优化测量位置而非对密集候选网格进行加权,所提方法通过设计强制稀疏性,无需进行 l1 调参,并显著降低了计算复杂度。我们在解析可处理的指数增长基准、MNIST 图像采样上验证了 NODE,并通过真实世界稀疏视角 X 射线 CT 示例展示了其有效性。在所有案例中,NODE 均优于基线方法,显示出重建精度和任务特定性能的显著提升。