Sigmoids (AKA s-curves or logistic curves) are commonly used in a diverse spectrum of disciplines as models for time-varying phenomena showing initial acceleration followed by slowing: technology diffusion, cumulative cases of an epidemic, population growth towards a carrying capacity, etc. Existing work demonstrates that retrospective fit of data is often impressive. We show that in time series data, the future fit tends to be poor unless the data covers the entire range from before to after the inflection point. We discuss the theoretical reasons for this: the growth data provides little information about the damping term (and vice-versa). As a consequence, forecasting with sigmoids tends to be very unreliable. We suggest some practical approaches to improving the viability of forecasting sigmoid models.
翻译:Sigmoids(AKA s-urves 或后勤曲线)通常在一系列不同的学科中使用,作为时间变化现象的模型,显示初步加速,然后放慢速度:技术传播、流行病累积案例、人口增长到承载能力等。 现有工作表明,数据追溯适用性往往给人留下深刻印象。我们显示,在时间序列数据中,除非数据涵盖从前到后的整个范围,否则未来适合性往往较差。我们讨论了这方面的理论原因:增长数据很少提供关于摇篮期(和反之亦然)的信息。因此,用小类进行预测往往非常不可靠。我们建议了一些实用的方法来改进预测小类模型的可行性。