We propose to use affect as a proxy for mood in literary texts. In this study, we explore the differences in computationally detecting tone versus detecting mood. Methodologically we utilize affective word embeddings to look at the affective distribution in different text segments. We also present a simple yet efficient and effective method of enhancing emotion lexicons to take both semantic shift and the domain of the text into account producing real-world congruent results closely matching both contemporary and modern qualitative analyses.
翻译:我们提出使用情感作为文学文本情绪的代理。本研究探讨了计算检测语调与检测情绪之间的差异。在方法上,我们利用情感词嵌入来查看不同文本段落中的情感分布。同时,我们还提出了一种简单而高效的方法,通过考虑语义变化和文本领域来增强情感词典,从而产生与当代和现代定性分析非常接近的真实世界相符合的结果。