Photorealism is an important aspect of modern video games since it can shape player experience and impact immersion, narrative engagement, and visual fidelity. To achieve photorealism, beyond traditional rendering pipelines, generative models have been increasingly adopted as an effective approach for bridging the gap between the visual realism of synthetic and real worlds. However, under real-time constraints of video games, existing generative approaches continue to face a tradeoff between visual quality and runtime efficiency. In this work, we present a framework for enhancing the photorealism of rendered game frames using generative networks. We propose REGEN, which first employs a robust unpaired image-to-image translation model to generate semantically consistent photorealistic frames. These generated frames are then used to create a paired dataset, which transforms the problem to a simpler unpaired image-to-image translation. This enables training with a lightweight method, achieving real-time inference without compromising visual quality. We evaluate REGEN on Unreal Engine, showing, by employing the CMMD metric, that it achieves comparable or slightly improved visual quality compared to the robust method, while improving the frame rate by 12x. Additional experiments also validate that REGEN adheres to the semantic preservation of the initial robust image-to-image translation method and maintains temporal consistency. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN
翻译:真实感是现代电子游戏的重要特性,它能够塑造玩家体验并影响沉浸感、叙事参与度和视觉保真度。为实现真实感,除传统渲染管线外,生成模型已日益成为弥合合成世界与真实世界视觉真实感差距的有效方法。然而,在视频游戏的实时性约束下,现有生成方法仍面临视觉质量与运行效率之间的权衡。本研究提出一种利用生成网络增强渲染游戏帧真实感的框架。我们提出REGEN方法,首先采用鲁棒的无配对图像到图像转换模型生成语义一致的真实感画面。这些生成的帧随后被用于构建配对数据集,从而将问题转化为更简单的配对图像到图像转换。这使得能够通过轻量级方法进行训练,在不牺牲视觉质量的前提下实现实时推理。我们在虚幻引擎上评估REGEN,通过采用CMMD度量指标表明,其视觉质量与鲁棒方法相当或略有提升,同时将帧率提高了12倍。补充实验进一步验证REGEN遵循初始鲁棒图像到图像转换方法的语义保持特性,并维持时间一致性。本工作的代码、预训练模型及演示可在以下网址获取:https://github.com/stefanos50/REGEN