In this paper, we describe our method for the detection of lexical semantic change, i.e., word sense changes over time. We examine semantic differences between specific words in two corpora, chosen from different time periods, for English, German, Latin, and Swedish. Our method was created for the SemEval 2020 Task 1: \textit{Unsupervised Lexical Semantic Change Detection.} We ranked $1^{st}$ in Sub-task 1: binary change detection, and $4^{th}$ in Sub-task 2: ranked change detection. Our method is fully unsupervised and language independent. It consists of preparing a semantic vector space for each corpus, earlier and later; computing a linear transformation between earlier and later spaces, using Canonical Correlation Analysis and Orthogonal Transformation; and measuring the cosines between the transformed vector for the target word from the earlier corpus and the vector for the target word in the later corpus.
翻译:在本文中,我们描述我们测出词汇语义变化的方法,即时间上的字感变化。我们检查了英文、德文、拉丁文和瑞典文两个不同时期从不同时间段选择的词团中具体词词的语义差异。我们的方法是为SemEval 2020任务1:\ textit{无人监督的词汇语义变化探测而创建的。}我们在子任务1:二进制变化检测和4 ⁇ th}中排名1 ⁇ st}$,在子任务2:位变化检测中排名4 ⁇ th}。我们的方法是完全不受监督的,语言独立。它包括:为每个要素早晚地准备一个语义矢量空间;利用Canonic Correlation 分析和Othoconomic Transformation,计算早期和以后空间之间的线形变;测量变矢量介于先前的矢量和后体中目标字的矢量之间的正弦。