Implicit authentication (IA) transparently authenticates users by utilizing their behavioral data sampled from various sensors. Identifying the illegitimate user through constantly analyzing current users' behavior, IA adds another layer of protection to the smart device. Due to the diversity of human behavior, the existing research works tend to simultaneously utilize many different features to identify users, which is less efficient. Irrelevant features may increase system delay and reduce the authentication accuracy. However, dynamically choosing the best suitable features for each user (personal features) requires a massive calculation, especially in the real environment. In this paper, we proposed EchoIA to find personal features with a small amount of calculation by utilizing user feedback. In the authentication phase, our approach maintains the transparency, which is the major advantage of IA. In the past two years, we conducted a comprehensive experiment to evaluate EchoIA. We compared it with other state-of-the-art IA schemes in the aspect of authentication accuracy and efficiency. The experiment results show that EchoIA has better authentication accuracy (93\%) and less energy consumption (23-hour battery lifetimes) than other IA schemes.
翻译:通过利用从各种传感器中取样的行为数据,透明地对用户进行隐性认证(IA) 透明地对用户进行认证; 通过不断分析当前用户的行为来识别非法用户, IA为智能设备增加了另一层保护。由于人类行为的多样性,现有研究工作往往同时使用许多不同的特征来识别用户,而这种特征效率较低。不相关的特征可能会增加系统延迟,降低认证的准确性。然而,动态地为每个用户选择最适合的特征(个人特征)需要大量计算,特别是在真实环境中。在本文中,我们建议EchoIA通过使用用户反馈找到少量计算的个人特征。在认证阶段,我们的方法保持透明度,这是IA的主要优势。在过去两年中,我们进行了全面实验,以评价EchoIA。我们在认证准确性和效率方面与其他最先进的IA计划进行比较。实验结果表明,EchoIA比其他IA计划有更好的认证准确性(93 ⁇ )和能量消耗(23小时电池使用寿命)。