Implicit authentication (IA) transparently authenticates users by utilizing their behavioral data sampled from various sensors. Identifying the illegitimate user through constantly analyzing current users' behavior, IA adds another layer of protection to the smart device. Due to the diversity of human behavior, the existing research works tend to simultaneously utilize many different features to identify users, which is less efficient. Irrelevant features may increase system delay and reduce the authentication accuracy. However, dynamically choosing the best suitable features for each user (personal features) requires a massive calculation, especially in the real environment. In this paper, we proposed EchoIA to find personal features with a small amount of calculation by utilizing user feedback. In the authentication phase, our approach maintains the transparency, which is the major advantage of IA. In the past two years, we conducted a comprehensive experiment to evaluate EchoIA. We compared it with other state-of-the-art IA schemes in the aspect of authentication accuracy and efficiency. The experiment results show that EchoIA has better authentication accuracy (93\%) and less energy consumption (23-hour battery lifetimes) than other IA schemes.


翻译:通过利用从各种传感器中取样的行为数据,透明地对用户进行隐性认证(IA) 透明地对用户进行认证; 通过不断分析当前用户的行为来识别非法用户, IA为智能设备增加了另一层保护。由于人类行为的多样性,现有研究工作往往同时使用许多不同的特征来识别用户,而这种特征效率较低。不相关的特征可能会增加系统延迟,降低认证的准确性。然而,动态地为每个用户选择最适合的特征(个人特征)需要大量计算,特别是在真实环境中。在本文中,我们建议EchoIA通过使用用户反馈找到少量计算的个人特征。在认证阶段,我们的方法保持透明度,这是IA的主要优势。在过去两年中,我们进行了全面实验,以评价EchoIA。我们在认证准确性和效率方面与其他最先进的IA计划进行比较。实验结果表明,EchoIA比其他IA计划有更好的认证准确性(93 ⁇ )和能量消耗(23小时电池使用寿命)。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2018年12月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2018年12月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员