The population protocol model describes a network of $n$ anonymous agents who cannot control with whom they interact. The agents collectively solve some computational problem through random pairwise interactions, each agent updating its own state in response to seeing the state of the other agent. They are equivalent to the model of chemical reaction networks, describing abstract chemical reactions such as $A+B \rightarrow C+D$, when the latter is subject to the restriction that all reactions have two reactants and two products, and all rate constants are 1. The counting problem is that of designing a protocol so that $n$ agents, all starting in the same state, eventually converge to states where each agent encodes in its state an exact or approximate description of population size $n$. In this survey paper, we describe recent algorithmic advances on the counting problem.
翻译:人口协议模式描述了一个由无法控制与谁互动的匿名代理商组成的网络。代理商通过随机对称互动共同解决一些计算问题,每个代理商更新自己的状态以回应其他代理商的状态。它们相当于化学反应网络的模式,描述抽象的化学反应,如$A+B\rightrow C+D$,当后者受到限制,即所有反应都有两个反应器和两个产品,而所有率常数都是1。 计时的问题是设计一个协议,这样一来,从同一州开始,每个代理商最终会汇合到每个代理商在其州对人口规模进行精确或大致描述的国家。我们在本调查文件中描述了计算问题的最新算法进展。