Microservice-based applications and cloud-native systems have been widely applied in large IT enterprises. The operation and management of microservice-based applications and cloud-native systems have become the focus of research. Essential and real workloads are the premise and basis of prominent research topics including performance testing, dynamic resource provisioning and scheduling, and AIOps. Due to the privacy restriction, the complexity and variety of workloads, and the requirements for reasonable intervention, it is difficult to copy or generate real workloads directly. In this paper, we formulate the task of workload simulation and propose a framework for Log-based Workload Simulation (LWS) in session-based application systems. First, LWS collects session logs and transforms them into grouped and well-organized sessions. Then LWS extracts the user behavior abstraction based on a relational model and the intervenable workload intensity by three methods from different perspectives. LWS combines the user behavior abstraction and the workload intensity for simulated workload generation and designs a domain-specific language for better execution. The experimental evaluation is performed on an open-source cloud-native application and a public real-world e-commerce workload. The experimental results show that the simulated workload generated by LWS is effective and intervenable.


翻译:大型信息技术企业广泛应用基于微观服务的应用程序和云源系统; 微型服务应用程序和云源系统的操作和管理已成为研究的重点; 基本和实际工作量是主要研究课题的前提和基础,包括绩效测试、动态资源提供和时间安排以及AIOps; 由于隐私限制、工作量的复杂性和多样性以及合理干预的要求,很难直接复制或产生真正的工作量; 本文我们拟订工作量模拟任务,并提议一个基于日志的工作负荷模拟(LWS)框架,用于会议应用系统中的基于日志的工作负荷模拟(LWS)框架; 首先, LWS收集会议日志,将其转换为分组的、组织良好的会议; 然后, LWS从不同角度提取基于关系模型的用户行为抽象和三种方法的可互换工作量强度; LWS将模拟工作量生成的用户行为抽象和工作量强度结合起来,并设计一种适合更好地执行的域名语言。 实验性评价是在开放源云源应用程序上进行的,以及一种可复制的公共实体间电子商务工作量。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员