Existing research on audio classification faces challenges in recognizing attributes of passive underwater vessel scenarios and lacks well-annotated datasets due to data privacy concerns. In this study, we introduce CLAPP (Contrastive Language-Audio Pre-training in Passive Underwater Vessel Classification), a novel model. Our aim is to train a neural network using a wide range of vessel audio and vessel state text pairs obtained from an oceanship dataset. CLAPP is capable of directly learning from raw vessel audio data and, when available, from carefully curated labels, enabling improved recognition of vessel attributes in passive underwater vessel scenarios. Model's zero-shot capability allows predicting the most relevant vessel state description for a given vessel audio, without directly optimizing for the task. Our approach aims to solve 2 challenges: vessel audio-text classification and passive underwater vessel audio attribute recognition. The proposed method achieves new state-of-the-art results on both Deepship and Shipsear public datasets, with a notable margin of about 7%-13% for accuracy compared to prior methods on zero-shot task.
翻译:暂无翻译