This paper introduces a probabilistic guidance approach for the swarm-to-swarm engagement problem. The idea is based on driving the controlled swarm towards an adversary swarm, where the adversary swarm aims to converge to a stationary distribution that corresponds to a defended base location. The probabilistic approach is based on designing a Markov chain for the distribution of the swarm to converge a stationary distribution. This approach is decentralized, so each agent can propagate its position independently of other agents. Our main contribution is the formulation of the swarm-to-swarm engagement as an optimization problem where the population of each swarm decays with each engagement and determining a desired distribution for the controlled swarm to converge time-varying distribution and eliminate agents of the adversary swarm until adversary swarm enters the defended base location. We demonstrate the validity of proposed approach on several swarm engagement scenarios.
翻译:本文为群集至群集的接触问题引入了一种概率性指导方法。 其基础思想是将控控的群落推向敌体群, 敌体群旨在汇合到与防守基地位置相对的固定分布点。 概率性方法的基础是设计一个Markov链条, 以分配群集, 凝聚固定分布点。 这种方法是分散的, 使每个代理人可以独立于其他代理人而传播其位置。 我们的主要贡献是将控控的群落形成一个优化问题, 使每群群群群群的人口随每次参与而衰减, 并确定受控的群群群的预期分布点, 以聚集时间变化分布, 消灭敌体群的代理人, 直至敌体群进入防御基地位置。 我们展示了在数种群集的接触情景上拟议方法的有效性 。