Natural Language Understanding (NLU) is an established component within a conversational AI or digital assistant system, and it is responsible for producing semantic understanding of a user request. We propose a scalable and automatic approach for improving NLU in a large-scale conversational AI system by leveraging implicit user feedback, with an insight that user interaction data and dialog context have rich information embedded from which user satisfaction and intention can be inferred. In particular, we propose a general domain-agnostic framework for curating new supervision data for improving NLU from live production traffic. With an extensive set of experiments, we show the results of applying the framework and improving NLU for a large-scale production system and show its impact across 10 domains.
翻译:自然语言理解(NLU)是对话性AI或数字助理系统的一个既定组成部分,它负责对用户请求提供语义理解。我们建议采用可扩展和自动的方法,利用隐含用户反馈,在大规模对话性AI系统中改进非语言U,并洞察到用户互动数据和对话环境包含丰富的信息,可以据此推断用户满意度和意图。特别是,我们提议了一个一般域名框架,用于从现场生产流量中整理新的监督数据,以改进非语言U。我们通过一系列广泛的实验,展示了应用该框架以及改进大规模生产系统非语言U的结果,并展示了其在10个领域的影响。