Bayesian spatial modeling provides a flexible framework for whole-brain fMRI analysis by explicitly incorporating spatial dependencies, overcoming the limitations of traditional massive univariate approaches that lead to information waste. In this work, we introduce SIMBA, a Scalable Image Modeling using a Bayesian Approach, for group-level fMRI analysis, which places Gaussian process (GP) priors on spatially varying functions to capture smooth and interpretable spatial association patterns across the brain volume. To address the significant computational challenges of GP inference in high-dimensional neuroimaging data, we employ a low-rank kernel approximation that enables projection into a reduced-dimensional subspace. This allows for efficient posterior computation without sacrificing spatial resolution, and we have developed efficient algorithms for this implemented in Python that achieve fully Bayesian inference either within minutes using the Gibbs sampler or within seconds using mean-field variational inference (VI). Through extensive simulation studies, we first show that SIMBA outperforms competing methods in estimation accuracy, activation detection sensitivity, and uncertainty quantification, especially in low signal-to-noise settings. We further demonstrate the scalability and interpretability of SIMBA in large-scale task-based fMRI applications, analyzing both volumetric and cortical surface data from the NARPS and ABCD studies.
翻译:贝叶斯空间建模通过显式纳入空间依赖关系,为全脑fMRI分析提供了灵活框架,克服了传统大规模单变量方法导致信息浪费的局限。本研究提出SIMBA(基于贝叶斯方法的可扩展图像建模),用于组水平fMRI分析。该方法对空间变异函数施加高斯过程先验,以捕捉全脑范围内平滑且可解释的空间关联模式。为解决高维神经影像数据中高斯过程推断的重大计算挑战,我们采用低秩核近似方法,将数据投影至降维子空间。该技术可在不牺牲空间分辨率的前提下实现高效后验计算,并开发了基于Python的高效算法,可通过吉布斯采样器在数分钟内完成全贝叶斯推断,或通过平均场变分推断在数秒内完成。通过大量模拟研究,我们首先证明SIMBA在估计精度、激活检测灵敏度及不确定性量化方面优于现有方法,尤其在低信噪比场景中表现突出。进一步在基于任务的大规模fMRI应用中验证了SIMBA的可扩展性与可解释性,成功分析了来自NARPS和ABCD研究的体素数据与皮层表面数据。