We introduce \texttt{N-LTP}, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as \texttt{Stanza}, that adopt an independent model for each task, \texttt{N-LTP} adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method \cite{DBLP:journals/corr/abs-1907-04829} where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at \url{https://github.com/HIT-SCIR/ltp}.


翻译:我们引入了\ textt{N-LTP},这是一个支持六种基本中国NLP任务的开放源码神经语言技术平台,例如\ textt{Stanza},它为每一项任务采用独立的模型,\ textt{N-LTP}(中文文字分割、部分语音标记和名称实体识别),{合成分析}(依赖性剖析)和{语义剖析}(语义剖析和语义作用标签)。不同于现有的最先进的工具箱,例如\ textt{Stanza},它为每项任务采用独立的模型,\ textt{N-LTP}(中文文字分割、部分语音标签标签和名称实体识别),它采用多任务框架,使用共同的预培训模式,具有在中国相关任务中获取共享知识的优势。此外,知识蒸馏方法{DBLP:journals/corr/abs-1907-04829}, 单项任务模型正在进一步引入多功能模型,以鼓励多任务模型,多功能支持多功能模型, 超越其基础的多功能模型,\ tatlettlt{Rtlet{N-deal-deal 和视觉处理。最后,我们提供了最容易的Att- train- train-to to to to to smaus to to to kmaildal to make the sweadal to sheal to sheal to supal to smausal to smausal to sal to supal to supal

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
41+阅读 · 2020年9月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
8+阅读 · 2021年3月2日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
6+阅读 · 2019年9月4日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员