Probabilistic Virtual Fixtures (VFs) enable the adaptive selection of the most suitable haptic feedback for each phase of a task, based on learned or perceived uncertainty. While keeping the human in the loop remains essential, for instance, to ensure high precision, partial automation of certain task phases is critical for productivity. We present a unified framework for probabilistic VFs that seamlessly switches between manual fixtures, semi-automated fixtures (with the human handling precise tasks), and full autonomy. We introduce a novel probabilistic Dynamical System-based VF for coarse guidance, enabling the robot to autonomously complete certain task phases while keeping the human operator in the loop. For tasks requiring precise guidance, we extend probabilistic position-based trajectory fixtures with automation allowing for seamless human interaction as well as geometry-awareness and optimal impedance gains. For manual tasks requiring very precise guidance, we also extend visual servoing fixtures with the same geometry-awareness and impedance behavior. We validate our approach experimentally on different robots, showcasing multiple operation modes and the ease of programming fixtures.
翻译:概率虚拟夹具(VFs)能够基于学习或感知到的不确定性,为任务的每个阶段自适应地选择最合适的触觉反馈。尽管保持人在回路中仍然至关重要(例如,以确保高精度),但对某些任务阶段的部分自动化对于提高生产率同样关键。本文提出了一种统一的概率虚拟夹具框架,可在手动夹具、半自动夹具(由人处理精确任务)与全自动模式之间无缝切换。我们引入了一种新颖的基于概率动态系统的虚拟夹具,用于粗粒度引导,使机器人能够自主完成特定任务阶段,同时保持操作员在回路中。对于需要精确引导的任务,我们扩展了基于概率位置的轨迹夹具,使其具备自动化能力,支持无缝人机交互、几何感知与最优阻抗增益。对于需要极高精度引导的手动任务,我们还扩展了视觉伺服夹具,使其具备相同的几何感知与阻抗行为。我们在不同机器人上通过实验验证了所提方法,展示了多种操作模式以及夹具编程的便捷性。