Accessibility research has grown substantially in the past few decades, yet there has been no literature review of the field. To understand current and historical trends, we created and analyzed a dataset of accessibility papers appearing at CHI and ASSETS since ASSETS' founding in 1994. We qualitatively coded areas of focus and methodological decisions for the past 10 years (2010-2019, N=506 papers), and analyzed paper counts and keywords over the full 26 years (N=836 papers). Our findings highlight areas that have received disproportionate attention and those that are underserved--for example, over 43% of papers in the past 10 years are on accessibility for blind and low vision people. We also capture common study characteristics, such as the roles of disabled and nondisabled participants as well as sample sizes (e.g., a median of 13 for participant groups with disabilities and older adults). We close by critically reflecting on gaps in the literature and offering guidance for future work in the field.


翻译:在过去几十年中,无障碍研究大幅增加,然而,没有开展这方面的文献审查。为了了解当前和历史趋势,我们创建并分析了自1994年ASSETS成立以来在CHI和ASSETS上出现的无障碍文件数据集。我们从质量上规范了过去十年(2010-2019年,N=506文件)的重点领域和方法决定,分析了整个26年的纸张计数和关键词(N=836文件)。我们的调查结果突出显示了受到过度关注的领域和得不到充分服务的领域,例如,过去十年中超过43%的论文涉及盲人和低视力者的无障碍问题。我们还捕捉了共同的研究特点,如残疾和非残疾参与者的作用以及抽样大小(例如残疾和老年人参与群体13中位)。我们最后认真思考了文献方面的差距,并为今后实地工作提供了指导。

0
下载
关闭预览

相关内容

ACM SIGACCESS Conference on Computers and Accessibility是为残疾人和老年人提供与计算机相关的设计、评估、使用和教育研究的首要论坛。我们欢迎提交原始的高质量的有关计算和可访问性的主题。今年,ASSETS首次将其范围扩大到包括关于计算机无障碍教育相关主题的原创高质量研究。官网链接:http://assets19.sigaccess.org/
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
One-Class Classification: A Survey
Arxiv
7+阅读 · 2021年1月8日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员