In epidemiological research, modeling the cumulative effects of time-dependent exposures on survival outcomes presents a challenge due to their intricate temporal dynamics. Conventional spline-based statistical methods, though effective, require repeated data transformation for each spline parameter tuning, with survival analysis computations relying on the entire dataset, posing difficulties for large datasets. Meanwhile, existing neural network-based survival analysis methods focus on accuracy but often overlook the interpretability of cumulative exposure patterns. To bridge this gap, we introduce CENNSurv, a novel deep learning approach that captures dynamic risk relationships from time-dependent data. Evaluated on two diverse real-world datasets, CENNSurv revealed a multi-year lagged association between chronic environmental exposure and a critical survival outcome, as well as a critical short-term behavioral shift prior to subscription lapse. This demonstrates CENNSurv's ability to model complex temporal patterns with improved scalability. CENNSurv provides researchers studying cumulative effects a practical tool with interpretable insights.
翻译:在流行病学研究中,由于时间依赖性暴露的复杂时序动态特性,建模其对生存结局的累积效应是一项挑战。传统的基于样条的统计方法虽然有效,但每次样条参数调整都需要重复进行数据转换,且生存分析计算依赖于整个数据集,这给大规模数据集的处理带来了困难。与此同时,现有的基于神经网络的生存分析方法侧重于准确性,但常常忽视累积暴露模式的可解释性。为了弥合这一差距,我们提出了CENNSurv,一种新颖的深度学习方法,能够从时间依赖性数据中捕捉动态风险关系。在两个不同的真实世界数据集上进行评估后,CENNSurv揭示了慢性环境暴露与一个关键生存结局之间存在多年的滞后关联,以及在订阅失效前存在一个关键的短期行为转变。这证明了CENNSurv能够以改进的可扩展性对复杂的时间模式进行建模。CENNSurv为研究累积效应的研究人员提供了一个具有可解释性洞察的实用工具。