Recommendation is the task of ranking items (e.g. movies or products) according to individual user needs. Current systems rely on collaborative filtering and content-based techniques, which both require structured training data. We propose a framework for recommendation with off-the-shelf pretrained language models (LM) that only used unstructured text corpora as training data. If a user $u$ liked \textit{Matrix} and \textit{Inception}, we construct a textual prompt, e.g. \textit{"Movies like Matrix, Inception, ${<}m{>}$"} to estimate the affinity between $u$ and $m$ with LM likelihood. We motivate our idea with a corpus analysis, evaluate several prompt structures, and we compare LM-based recommendation with standard matrix factorization trained on different data regimes. The code for our experiments is publicly available (https://colab.research.google.com/drive/1f1mlZ-FGaLGdo5rPzxf3vemKllbh2esT?usp=sharing).
翻译:建议是根据个别用户的需要排列项目(如电影或产品)的任务。目前的系统依靠合作过滤和内容技术,两者都需要结构化的培训数据。我们提出了一个建议框架,建议采用现成的预先培训语言模型(LM),仅将非结构化文本公司用作培训数据。如果一个用户喜欢\ textit{Matrix} 和\ textit{Invition},我们就建立一个文本提示,例如\textit{"Movies like Matrics, Inception, $_m ⁇ $"}来估计美元和美元之间的亲近性。我们用文体分析来激励我们的想法,评估几个快速结构,并将基于LM的建议与在不同数据制度上培训的标准矩阵要素化进行比较。我们实验的代码是公开的(https://colab.research.gogle.com/drive/1f1mlZ-FGG5rPzxvevKll2s=Plist=usshared)。