Text sentiment analysis, also known as opinion mining, is research on the calculation of people's views, evaluations, attitude and emotions expressed by entities. Text sentiment analysis can be divided into text-level sentiment analysis, sen-tence-level sentiment analysis and aspect-level sentiment analysis. Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task in the field of sentiment analysis, which aims to predict the polarity of aspects. The research of pre-training neural model has significantly improved the performance of many natural language processing tasks. In recent years, pre training model (PTM) has been applied in ABSA. Therefore, there has been a question, which is whether PTMs contain sufficient syntactic information for ABSA. In this paper, we explored the recent DeBERTa model (Decoding-enhanced BERT with disentangled attention) to solve Aspect-Based Sentiment Analysis problem. DeBERTa is a kind of neural language model based on transformer, which uses self-supervised learning to pre-train on a large number of original text corpora. Based on the Local Context Focus (LCF) mechanism, by integrating DeBERTa model, we purpose a multi-task learning model for aspect-based sentiment analysis. The experiments result on the most commonly used the laptop and restaurant datasets of SemEval-2014 and the ACL twitter dataset show that LCF mechanism with DeBERTa has significant improvement.


翻译:语言感知分析(ABSA)是情感分析领域的细微任务,目的是预测不同方面的极性。培训前神经模型的研究极大地改善了许多自然语言处理任务的业绩。近年来,在ABSA中应用了预先培训模式(PTM ) 。因此,有一个问题,这就是PTM 是否包含对ABSA的足够合成信息。在本文中,我们探索了最近的DeBERTA模型(Depoting-enchaned BERT, 注意力不集中),以解决基于情感分析的极性。培训前神经模型的研究极大地改善了许多自然语言处理任务的绩效。DeBERTA是一种基于变异器的神经语言模型,它使用自我控制学习到对ABSA的预感知。因此,有一个问题,这就是PTM 是否包含对ABSA 的足够同步感知分析。我们探索了最近的DeBERTA模型(Decoding-encal BER) 模型和基于SLOLA的原始数据分析结果。我们使用最大幅度的SLAF数据库模型, 用于CRLA的原始数据分析。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员