This paper presents a neural scheme for the topology-aware interpolation of time-varying scalar fields. Given a time-varying sequence of persistence diagrams, along with a sparse temporal sampling of the corresponding scalar fields, denoted as keyframes, our interpolation approach aims at "inverting" the non-keyframe diagrams to produce plausible estimations of the corresponding, missing data. For this, we rely on a neural architecture which learns the relation from a time value to the corresponding scalar field, based on the keyframe examples, and reliably extends this relation to the non-keyframe time steps. We show how augmenting this architecture with specific topological losses exploiting the input diagrams both improves the geometrical and topological reconstruction of the non-keyframe time steps. At query time, given an input time value for which an interpolation is desired, our approach instantaneously produces an output, via a single propagation of the time input through the network. Experiments interpolating 2D and 3D time-varying datasets show our approach superiority, both in terms of data and topological fitting, with regard to reference interpolation schemes. Our implementation is available at this GitHub link : https://github.com/MohamedKISSI/Topology-Aware-Neural-Interpolation-of-Scalar-Fields.git.
翻译:本文提出了一种用于时变标量场拓扑感知插值的神经方案。给定一个持续性图的时间序列,以及对应标量场的稀疏时间采样(称为关键帧),我们的插值方法旨在“反转”非关键帧的持续性图,以生成对应缺失数据的合理估计。为此,我们采用一种神经架构,该架构基于关键帧示例学习从时间值到对应标量场的关系,并可靠地将此关系扩展到非关键帧时间步。我们展示了如何通过利用输入持续性图的特定拓扑损失来增强该架构,从而改善非关键帧时间步的几何与拓扑重建。在查询时,给定需要插值的输入时间值,我们的方法通过将时间输入在网络中进行单次前向传播,即可瞬时生成输出。在二维和三维时变数据集上的插值实验表明,相较于参考插值方案,我们的方法在数据拟合和拓扑拟合方面均具有优越性。我们的实现代码可在以下GitHub链接获取:https://github.com/MohamedKISSI/Topology-Aware-Neural-Interpolation-of-Scalar-Fields.git。