Bayesian Knowledge Tracing, a model used for cognitive mastery estimation, has been a hallmark of adaptive learning research and an integral component of deployed intelligent tutoring systems (ITS). In this paper, we provide a brief history of knowledge tracing model research and introduce pyBKT, an accessible and computationally efficient library of model extensions from the literature. The library provides data generation, fitting, prediction, and cross-validation routines, as well as a simple to use data helper interface to ingest typical tutor log dataset formats. We evaluate the runtime with various dataset sizes and compare to past implementations. Additionally, we conduct sanity checks of the model using experiments with simulated data to evaluate the accuracy of its EM parameter learning and use real-world data to validate its predictions, comparing pyBKT's supported model variants with results from the papers in which they were originally introduced. The library is open source and open license for the purpose of making knowledge tracing more accessible to communities of research and practice and to facilitate progress in the field through easier replication of past approaches.
翻译:用于认知掌握估计的模型Bayesian知识追踪,是适应性学习研究的标志,也是部署的智能辅导系统(ITS)的一个组成部分。在本文中,我们提供了知识追踪模型研究的简史,并引进了PyBKT,这是一个可检索和计算高效的文献模型扩展图书馆。图书馆提供数据生成、安装、预测和交叉校验常规,以及一个简单易用的数据辅助器界面,用于查找最典型的教师日志数据集格式。我们评估使用各种数据集大小的运行时间,并与以往的实施进行比较。此外,我们利用模拟数据的实验对模型进行随机性检查,以评估其EM参数学习的准确性,并使用现实世界数据来验证其预测,比较PyBKT所支持的模型变量和最初推出的论文的结果。图书馆是开放的源和开放许可,目的是让研究和实践界更容易地了解知识追踪,并通过更方便地复制过去的做法促进实地的进展。