This work combines control barrier functions (CBFs) with a whole-body controller to enable self-collision avoidance for the MIT Humanoid. Existing reactive controllers for self-collision avoidance cannot guarantee collision-free trajectories as they do not leverage the robot's full dynamics, thus compromising kinematic feasibility. In comparison, the proposed CBF-WBC controller can reason about the robot's underactuated dynamics in real-time to guarantee collision-free motions. The effectiveness of this approach is validated in simulation. First, a simple hand-reaching experiment shows that the CBF-WBC enables the robot's hand to deviate from an infeasible reference trajectory to avoid self-collisions. Second, the CBF-WBC is combined with a linear model predictive controller (LMPC) designed for dynamic locomotion, and the CBF-WBC is used to track the LMPC predictions. A centroidal angular momentum task is also used to generate arm motions that assist humanoid locomotion and disturbance recovery. Walking experiments show that CBFs allow the centroidal angular momentum task to generate feasible arm motions and avoid leg self-collisions when the footstep location or swing trajectory provided by the high-level planner are infeasible for the real robot.
翻译:这项工作将控制屏障功能( CBFs) 与整个机体控制器( CBFs) 结合了控制屏障功能( CBFs) 和整个机体控制器( CDFs), 以便能够避免麻省理工的自我碰撞。 现有的自我控制控制器( ABBs) 无法保证不发生碰撞, 以避免碰撞的轨迹。 现有的自我控制器无法保证不发生碰撞。 第二, CBF- WBC 与为动态动动动能设计的线性模型预测控制器( LMPC ) 相结合, 而CBFF- WBC 则用来实时了解机器人未发生作用的动态动态动态动态动态动态, 以保证不发生碰撞的动作。 此方法的有效性在模拟中被验证。 首先, 简单手的实验显示 CBFFC让机器人的手偏离一个不可行的参考轨迹轨迹轨迹, 以避免在高水平的轨道上移动。