Depuis une trentaine d'ann\'{e}es, les ing\'{e}nieurs utilisent couramment des analogies avec l'\'{e}volution naturelle pour optimiser des dispositifs techniques. Le plus souvent, ces m\'{e}thodes "g\'{e}n\'{e}tiques" ou "\'{e}volutionnaires" sont consid\'{e}r\'{e}es uniquement du point de vue pratique, comme des m\'{e}thodes d'optimisation performantes, qu'on peut utiliser \`{a} la place d'autres m\'{e}thodes (gradients, simplexes, ...). Dans cet article, nous essayons de montrer que les sciences et les techniques, mais aussi les organisations humaines, et g\'{e}n\'{e}ralement tous les syst\`{e}mes complexes, ob\'{e}issent \`{a} des lois d'\'{e}volution dont la g\'{e}n\'{e}tique est un bon mod\`{e}le repr\'{e}sentatif, m\^{e}me si g\^{e}nes et chromosomes sont "virtuels" : ainsi loin d'\^{e}tre seulement un outil ponctuel d'aide \`{a} la synth\`{e}se de solutions technologiques, la repr\'{e}sentation g\'{e}n\'{e}tique est-elle un mod\`{e}le dynamique global de l'\'{e}volution du monde fa\c{c}onn\'{e} par l'agitation humaine.––––For thirty years, engineers commonly use analogies with natural evolution to optimize technical devices. More often that not, these "genetic" or "evolutionary" methods are only view as efficient tools, which could replace other optimization techniques (gradient methods, simplex, ...). In this paper, we try to show that sciences, techniques, human organizations, and more generally all complex systems, obey to evolution rules, whose the genetic is a good representative model, even if genes and chromosomes are "virtual". Thus, the genetic representation is not only a specific tool helping for the design of technological solutions, but also a global and dynamic model for the action of the human agitation on our world.


翻译: ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Arxiv
10+阅读 · 2020年4月5日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
3+阅读 · 2017年11月20日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
相关论文
Arxiv
10+阅读 · 2020年4月5日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
3+阅读 · 2017年11月20日
Arxiv
8+阅读 · 2014年6月27日
Top
微信扫码咨询专知VIP会员