Neural density estimation has seen widespread applications in the gravitational-wave (GW) data analysis, which enables real-time parameter estimation for compact binary coalescences and enhances rapid inference for subsequent analysis such as population inference. In this work, we explore the application of using the Kolmogorov-Arnold network (KAN) to construct efficient and interpretable neural density estimators for lightweight posterior construction of GW catalogs. By replacing conventional activation functions with learnable splines, KAN achieves superior interpretability, higher accuracy, and greater parameter efficiency on related scientific tasks. Leveraging this feature, we propose a KAN-based neural density estimator, which ingests megabyte-scale GW posterior samples and compresses them into model weights of tens of kilobytes. Subsequently, analytic expressions requiring only several kilobytes can be further distilled from these neural network weights with minimal accuracy trade-off. In practice, GW posterior samples with fidelity can be regenerated rapidly using the model weights or analytic expressions for subsequent analysis. Our lightweight posterior construction strategy is expected to facilitate user-level data storage and transmission, paving a path for efficient analysis of numerous GW events in the next-generation GW detectors.
翻译:神经密度估计在引力波数据分析中已得到广泛应用,它能够实现致密双星并合事件的实时参数估计,并为后续分析(如群体推断)提供快速推理支持。本研究探索了利用Kolmogorov-Arnold网络构建高效且可解释的神经密度估计器,以实现引力波星表的轻量化后验构建。通过将传统激活函数替换为可学习的样条函数,KAN在相关科学任务中展现出更优的可解释性、更高的精度以及更强的参数效率。基于此特性,我们提出了一种基于KAN的神经密度估计器,该模型可将兆字节级别的引力波后验样本压缩至数十千字节的模型权重。随后,仅需数千字节的解析表达式可从这些神经网络权重中进一步蒸馏得到,且精度损失极小。在实际应用中,高保真度的引力波后验样本可通过模型权重或解析表达式快速重构,以支持后续分析。我们的轻量化后验构建策略有望促进用户级数据存储与传输,为下一代引力波探测器中大量引力波事件的高效分析开辟路径。